

iOS vs. Action Script Data
Types Guide
Keeping your cool when jumping between languages

© DiaDraw

2

www.diadraw.com

iOS vs. ActionScript Data Types Guide

by Radoslava Leseva

Find us on the web at easynativeextensions.com

To report errors, please send a note to office@diadraw.com

Copyright © 2015 by DiaDraw

Project Editor: Hristo Lesev

Code Tester: Hristo Lesev

Cover and Interior Design: Radoslava Leseva

Proof Reader: Stephen Adams

Cover Illustration: Daniela Popova

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the

author. For information on getting permission for reprints or excerpts, contact office@diadraw.com.

Notice of Liability

The information in this book is distributed on an As Is basis, without warranty. While every

precaution has been taken in the preparation of the book, neither the author nor DiaDraw shall have any

liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or

indirectly by the instructions contained in this book or by the computer software and hardware products

described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and DiaDraw was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services

identified throughout this book are used in editorial fashion only and for the benefit of such companies with

no intention of infringement of the trademark. No use, or the use of any trade name, is intended to convey

endorsement or other affiliation with this book.

http://www.diadraw.com/
http://easynativeextensions.com/
mailto:office@diadraw.com?subject=I%20spotted%20a%20glitch!
mailto:office@diadraw.com?subject=I%20would%20like%20to%20reprint%20part%20of%20your%20book

1

www.diadraw.com

Contents

Introduction 3

What readers of Easy Native Extensions say 4

What to expect 5

Got the code? 6

Set the scene 7

How ActionScript data is represented in C 9

What is void*? 9

How does void* help with AIR data types? 10

Quick preparation: add the headers 12

Auxiliary Functions 13

Sending events to ActionScript 13

Checking FREResult 17

Dealing with exceptions from FRE* functions 18

Changing the properties of ActionScript objects 20

Reading properties from ActionScript objects 22

Numeric and Boolean types 23

uint32_t 23

NSInteger 24

double 24

BOOL 24

NSNumber 24

Strings 25

http://www.diadraw.com/

2

www.diadraw.com

Date and Time 25

Working with Objects 26

Containers: Dictionary, Set, Array, Vector 27

Array 27

Dictionary 27

Set 27

Vector 27

When you know the data type 27

Dealing with byte arrays 28

Dealing with JSON 30

Handling NSError 30

Image Data 31

Final step: check your header 33

Where to go from here 34

http://www.diadraw.com/

3

www.diadraw.com

Introduction

So you took the cross-language rout of programming. It’s fun, it provides variety and it often feels as if

you are a tour guide for families visiting each other’s countries. Done that in real life, trust me. You have

several people tugging at your sleeve and asking things like “So what’s that in Canadian dollars?” or “I don’t

speak ounces. Why won’t they use the metric system?!” Usually all at the same time, as everyone knows it

isn’t impolite if you interrupt in a foreign language.

When it’s two programming languages tugging at your sleeve, rather than well-meaning relatives, you

find you initially spend most of your time working out how to translate different data types from one to the

other and vice versa. The good thing about this is that it’s usually a one-off exercise and you gradually build

a small library of tricks and shortcuts that make your life easier and the development – faster with each new

project.

The goal of this guide is to share with you the library of tricks and shortcuts that we have built and to

put wind in your development sails even on your very first iOS + AIR project.

http://www.diadraw.com/

4

www.diadraw.com

What readers
of Easy Native Extensions say

 “Well all I can say is that it was easily the best $30 I’ve spent in a while. I was back up and running in

under a day and as an added bonus Radoslava does a brilliant job of detailing how to wrap up the whole

build, packaging, and deployment process into a single Ant script. Her build script was much better than the

crummy one I remember cobbling together for my original ANE attempts. One of the things I hadn’t really

tackled previously was learning how to properly debug my ANEs. Thankfully a companion debugging guide

came bundled with the package, which takes you through the steps required to write a native iOS project

that will wrap around a test AIR app. With that you’ll be able to add breakpoints to Xcode and inspect your

ANE’s native library.” Read more…

Christopher Caleb

Author of Flash iOS Apps Cookbook

www.yeahbutisitflash.com

“Your ebook on iOS native extensions (at least the part of it that I’ve read so far) is the best, clearest

communication about software development that I’ve ever read. It is rare and completely refreshing to find

programmers who can speak just as fluently and cleverly in their ‘natural’ language as in code, and who can

also use elegant graphics to clear-up abstractions. Bravo, and thanks!”

Craig Umanoff

Moving Pictures

“@DiaDrawCom The book was great, very good tutorial and was easy to setup my custom ane.

Thanks!”

@rudyvdblom

“Your eBook on ANE’s is one of the best investments I have made. The excellent explanations and

example code have saved me hours of trial-and-error. And I had planned to spend a couple of weeks

developing custom email and dropbox extensions. Being able to download well-documented, ready-to-build

source code gives me time to add extra features to my app. Very cool. Thanks.”

Andrew Rapo

Quahog Entertainment

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook
http://www.yeahbutisitflash.com/?p=7553
https://www.packtpub.com/application-development/flash-ios-apps-cookbook
http://www.yeahbutisitflash.com/
http://www.movingpictures.umanoff.com/
https://twitter.com/DiaDrawCom
https://twitter.com/rudyvdblom
http://quahogcorner.com/

5

www.diadraw.com

What to expect

At the end of this guide you will have:

1. A library of one-line functions, which you can call to convert most data types from

ActionScript to Objective-C and vice versa.

2. An arsenal of additional helper functions to deal with exceptions, events, object properties,

etc.

3. Understanding of how AIR data is represented in C, so you can extend your library should

you ever need to.

4. Hours and days of saved time. So where would you like to spend it?

http://www.diadraw.com/

6

www.diadraw.com

Got the code?
This eBook comes with accompanying code, which you can use in several different ways:

1. Test it as it is out of the package. I have added a few tests for you, which are exposed to

ActionScript and all you need to do is call them. You will find these in the Tests group.

2. Ignore the code in the package and follow the steps in the book to build your own

AIRHelperFunctions library. You can do that in the project you have created following the

tutorials in our Easy Native Extensions main book or create a brand new set of helpers in

another project you are working on.

3. Copy and paste AIRHelperFunctions.m and AIRHelperFunctions.h in a project you are

working on for a client or for yourself. Import AIRHelperFunctions.h in your code and start

using the helper functions.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook

7

www.diadraw.com

Set the scene

Let us start by adding a new group for helper files in your Xcode project. This step is more cosmetic

than crucial, but helps keep your work organized.

In Xcode select your native library project and do File > New > Group. Call the group Helpers. This

will make a new virtual folder in your project. I am calling it ‘virtual’, because this will not create an actual

folder on disk – you will need to do that by hand in Finder.

Now select the Helpers group and add a new file to it: File > New > File… Select iOS > Source >

Objective-C File from the list of options:

Select Empty file from the next set of options, name your file AIRHelperFunctions and save it.

Next, create add another file, a Header File this time, and give it the same name.

Both your helper files should now appear in the project

tree under Helpers.

AIRHelperFunctions.m is where you will build a small

library of functions for converting Objective-C and ActionScript

data types. AIRHelperFunctions.h will make them visible to the

rest of your code.

This is what the two files look like initially:

AIRHelperFunctions.m

// AIRHelperFunctions.m

// NativeExtensionTemplateiOS

//

// Created by Yourself on today’s date.

http://www.diadraw.com/

8

www.diadraw.com

// Copyright (c) 2015 DiaDraw. All rights reserved.

//

#import <Foundation/Foundation.h>

AIRHelperFunctions.h

// AIRHelperFunctions.h

// NativeExtensionTemplateiOS

//

// Created by Yourself on today’s date.

// Copyright (c) 2015 DiaDraw. All rights reserved.

//

#ifndef NativeExtensionTemplateiOS_AIRHelperFunctions_h

#define NativeExtensionTemplateiOS_AIRHelperFunctions_h

#endif

If you are new to any of the C language flavors: the #ifndef/#define/#endif construct above is called an

#include guard. Including a header file with the #include directive in C is very similar to copying and

pasting its contents into the file that includes it. That’s all fine, but come linking time, if more than one

other file included your header, any definitions from that header will appear in every file that included it

and the linker will complain that ‘such and such symbol has already been defined’. The

#ifndef/#define/#endif prevent that: #ifndef checks if a macro (the name you put after the #ifndef) has

already been defined and only allows the compiler to see the code between #ifndef and #endif if it hasn’t

been. #define defines the macro, so that the compiler will know about it after the first time it has reached

that line of code (i.e. in the first file that includes your header).

Objective-C uses #import directives as well as #include directives. #import is supposed to be an

improvement on #include by automatically preventing double inclusion.

Open AIRHelperFunctions.m and let us start adding magic to it.

http://www.diadraw.com/

9

www.diadraw.com

How ActionScript data
is represented in C

First, though, we need to have a word about how the ActionScript types are represented in the AIR C

API, which is what you use when you make iOS Native Extensions for AIR.

Most of the data you will be passing around will be either an argument of a function you call or a

result of a function you call.

When you implement a function on the native side which you want to be callable from ActionScript by

doing

extensionContextInstance.call(“functionName”, argument_1, argument_2, …);

needs to implement the following signature:

FREObject functionName(

 FREContext ctx,

 void* funcData,

 uint32_t argc,

 FREObject argv[])

You are already familiar with this signature from the chapter Three ways to pass data from native

code to ActionScript in the Easy Native Extensions book. Flip back to it if you need a reminder.

The interesting thing here is FREObject, which we see in a couple of places:

 Arguments to the function arrive as an array of FREObject instances: this is what FREObject

argv[] signifies.

 The function is expected to return a FREObject as a result.

If you open FlashRuntimeExtensions.h and look for the definition of FREObject, this is what you see:

typedef void * FREObject;

If you are familiar with any of the flavors of the C language, you probably know what this is and can

jump to the practical stuff. Otherwise, read on.

What is void*?

This essentially means that FREObject is a void pointer. A pointer is a variable that holds a memory

address. It can hold the memory address of something you expect to be of a particular type, for example:

http://www.diadraw.com/

10

www.diadraw.com

int * pointerToInt;

Or it can hold a memory address of data which can be of any type and the type is not specified when

the pointer is declared:

void * pointerToAnyType;

When you read the data located at the memory address which pointerToAnyType points to, you can

interpret it as an int, as a string or as something else.

When you pass data from ActionScript to Objective-C, you can put pretty much anything in your list

of arguments:

var argument_1 : int = 2;

var argument_2 : String = “How you doin’?”;

extensionContextInstance.call(“functionName”, argument_1, argument_2, …);

Both of these will arrive at the C side as FREObject, in other words as void *.

How does void* help with AIR data types?

The Adobe AIR C API gives you convenience functions that help convert a FREObject into the native

type you expect. You can find a full list here.

To get the integer value out of the first argument, for example, you will need to do the following:

int32_t nativeInt = 0;

FREResult success = FREGetObjectAsInt32(argv[0], &nativeInt);

// FREResult is an enumerator which tells us whether the call succeeded.

// It may fail because argv[0] was not the type we expected,

// was not supplied by ActionScript at all,

// we made the call on the wrong thread, etc.

if (FRE_OK == success)

{

 // we've got the int value successfully

}

http://www.diadraw.com/
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b14-62b8e11f12937b86be4-7ff9.html

11

www.diadraw.com

Getting an Objective-C NSString out of the second argument requires a little more work:

uint32_t strLength = 0;

const uint8_t * strValue = NULL;

// This call gives us a pointer to a C-style string (an array of 8-bit characters)

// and how long it is:

FREResult success = FREGetObjectAsUTF8(argv[1], &strLength, &strValue);

// If all went well with the previous call,

// we can try and convert the C-style string to an Objective-C NSString object:

NSString * nativeString = NULL;

if ((FRE_OK == success) && (0 < strLength) && (NULL != strValue))

{

 nativeString = [NSString stringWithUTF8String: (const char *) strValue];

}

Dealing with image data pointed to by a FREObject involves even more elaborate checks and

conversions.

You can see how the work stacks up. Instead of adding six lines of code every time you want to read a

string argument, how about making it a one-liner:

NSString * value = getNSStringFromFREObject(objectAS);

This is what you are going to build over the next few chapters: your own little library of one-liner

helper functions that will be at your fingertips to save you time with any iOS ANE project.

http://www.diadraw.com/

12

www.diadraw.com

Quick preparation: add the headers

You will be dealing with almost all of AIR’s C API, so let us import its header into your header file.

You will also need your code to know about most of the fundamental types in Objective-C. Open

AIRHelperFunctions.h and add an import statement for FlashRuntimeExtensions.h and Foundation.h:

AIRHelperFunctions.h

// AIRHelperFunctions.h

// NativeExtensionTemplateiOS

//

// Created by Yourself on today’s date.

// Copyright (c) 2015 DiaDraw. All rights reserved.

//

#ifndef NativeExtensionTemplateiOS_AIRHelperFunctions_h

#define NativeExtensionTemplateiOS_AIRHelperFunctions_h

#import <Foundation/Foundation.h>

#import "FlashRuntimeExtensions.h

#endif

Why import FlashRuntimeExtensions.h in AIRHelperFunctions.h, instead of AIRHelperFunctions.m?

AIRHelperFunctions.m will have definitions of the functions that will do conversions from, say NSString

to FREObject and AIRHelperFunctions.h will list the signatures of these functions, so they are visible to

anyone who needs to call them. To make them visible to another file, you will need to import

AIRHelperFnctions.h in it. This way anything that AIRHelperFunctions.h imports/includes will also be

visible to the file that imported it and you won’t have to add another import everywhere.

The first file where you will import AIRHelperFunctions.h is AIRHelperFunctions.m:

AIRHelperFunctions.m

// AIRHelperFunctions.m

// NativeExtensionTemplateiOS

//

// Created by Yourself on today’s date.

// Copyright (c) 2015 DiaDraw. All rights reserved.

//

#ifndef NativeExtensionTemplateiOS_AIRHelperFunctions_h

#define NativeExtensionTemplateiOS_AIRHelperFunctions_h

#import <AIRHelperFunctions.h>

#endif

Since AIRHelperFunctions.h already imports Foundation.h, you don’t need a second import of it in

AIRHelperFunctions.m.

http://www.diadraw.com/

13

www.diadraw.com

Auxiliary Functions

We will start at the deep end. Imagine groping your way to a pool’s deep end to leave a few props that

will help you swim towards it afterwards. Distant memory? Oh well, a bit too fresh for me, I only learned

how to swim in 2014…

Enough with the metaphors. What you will do is this: define a handful of auxiliary functions that will

make your life even easier when you start writing the helpers.

You will be adding code to AIRHelperFunctions.m, right after the #import directives.

Sending events to ActionScript

Sending an asynchronous event is one of the three ways of passing data from native code back to

ActionScript. You may remember that from the chapter called Three ways to pass data from native code to

ActionScript in the Easy Native Extensions book.

Sending an event is the only asynchronous way of passing data back and the only C API AIR call you

can make on any thread other than the main one. It is your way of signaling to your ActionScript code when

something has gone wrong or when the result of an asynchronous operation is ready, for example retrieving

user names from a server.

What effectively happens is this:

1. You subscribe to status events delivered to your ExtensionContext instance in ActionScript:

ActionScript

m_extensionContext.addEventListener(StatusEvent.STATUS, onStatusEvent);

…

private function onStatusEvent(_event : StatusEvent) : void

{

 trace(_event.code);

 trace(_event.level);

}

Then you call FREDispatchStatusEventAsync in your native code whenever you need to send an

event that will be caught by that listener:

Objective-C

FREDispatchStatusEventAsync(

 ctx,

 (const uint8_t *) "This is the message CODE",

 (const uint8_t *) "This is the message LEVEL");

http://www.diadraw.com/

14

www.diadraw.com

FREDispatchStatusEventAsync takes a FREContext - a pointer1 to the extension context on the

native side and two string values, which are mapped to the StatusEvent code and level properties

respectively:

FREResult FREDispatchStatusEventAsync(

 FREContext ctx,

 const uint8_t* code,

 const uint8_t* level

);

So the first auxiliary function you add will be one that lets you send an event/message to ActionScript

from anywhere without having to worry about supplying an extension context or converting strings to

const uint8_t*.

For this purpose you will need your auxiliary function to have access to a context instance. I tend to

make a copy of the one passed to the extension context initializer and keep it in my ANE’s main native file as

a global variable. Makes sense to use that instead of having another copy lurking around. In the declaration

below the extern keyword makes that global copy available to the code in AIRHelperFunctions.m:

#pragma extern declarations

extern FREContext g_ctx;

Since we are in a declaring mood (or is it just me?), let’s declare a few event types too:

#pragma event types

const NSString * MSG_ERROR = @"ERROR";

const NSString * MSG_WARNING = @"WARNING";

const NSString * MSG_INFO = @"INFO";

1 FREContext is another void *.

http://www.diadraw.com/

15

www.diadraw.com

And finally, here is the auxiliary function you’ve been waiting for:

#pragma sending events to ActionScript

/**

 * Sends a flash.events.SatusEvent to ActionScript.

 * The dispatch happens asynchronously.

 *

 * @param messageType This will be mapped to StatusEvent's code property.

 *

 * @param message This will be mapped to StatusEvent's level property and

 * can contain any information about the event in string form.

 */

void sendMessage(const NSString * const messageType, const NSString * const message)

{

 // Having a messageType is important, but the message itself can be left empty.

 static const NSString * MSG_DEFAULT_EVENT = @"STATUS_EVENT";

 assert(messageType);

 if (NULL != message)

 {

 FREDispatchStatusEventAsync(g_ctx, (uint8_t *) [messageType UTF8String],

 (uint8_t *) [message UTF8String]);

 }

 else

 {

 FREDispatchStatusEventAsync(g_ctx, (uint8_t *) [MSG_DEFAULT_EVENT UTF8String],

 (uint8_t *) [messageType UTF8String]);

 }

}

Now you can do this much shorter call in any part of your code:

sendMessage(MSG_ERROR, @”An error happened”);

What’s with the assert?

We get asked that a lot. This concept was hammered in my head when I was a junior programmer, so I

feel kind of old every time I am asked to explain it. But hey…

http://www.diadraw.com/

16

www.diadraw.com

An assert is usually defined as a “debug-only macro that aborts execution if its argument is false”2. In

other languages, like ActionScript, where you don’t have macros, you can use other techniques to achieve

the same effect. The idea is that you use an assert as a diagnostic tool to help you narrow down runtime

problems in debug builds. If a function asserts that the arguments passed to it are valid (non-NULL,

within an expected range or whatever else constitutes valid in the context of the function), you will know

as soon as something dodgy comes in, because your app will crash inside that function in debug. Without

the assert the function may not crash, but instead pass the bad data down the line, making the chain of

responsibility, and thus the time it takes you to get to the source of the bad data, longer.

You’ve got a little more work to do, in order to make this function available for use in other files: add

its signature to AIRHelperFunctions.h right after the #import directives:

AIRHelperFunctions.h

// AIRHelperFunctions.m

// NativeExtensionTemplateiOS

//

// Created by Yourself on today’s date.

// Copyright (c) 2015 DiaDraw. All rights reserved.

//

#ifndef NativeExtensionTemplateiOS_AIRHelperFunctions_h

#define NativeExtensionTemplateiOS_AIRHelperFunctions_h

#import <Foundation/Foundation.h>

#import "FlashRuntimeExtensions.h”

void sendMessage(const NSString * const messageType, const NSString * const message);

#endif

You will need to do that for any function in AIRHelperFunctions.m that you want to be able to call

from other files. I am hoping you will remember to do this with the functions we are about to start defining.

But just in case, I will remind you at the end of the book what your header file should look like.

2 Steve Maguire, Writing Solid Code (Redmond, Washington 1993), 16

http://www.diadraw.com/
http://www.amazon.com/gp/product/1556155514/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1556155514&linkCode=as2&tag=dia05b-20

17

www.diadraw.com

Checking FREResult

If you have a peek inside FlashRuntimeExtensions.h, you will notice that most AIR C API functions

return FREResult, which looks like this:

typedef enum {

 FRE_OK = 0,

 FRE_NO_SUCH_NAME = 1,

 FRE_INVALID_OBJECT = 2,

 FRE_TYPE_MISMATCH = 3,

 FRE_ACTIONSCRIPT_ERROR = 4,

 FRE_INVALID_ARGUMENT = 5,

 FRE_READ_ONLY = 6,

 FRE_WRONG_THREAD = 7,

 FRE_ILLEGAL_STATE = 8,

 FRE_INSUFFICIENT_MEMORY = 9,

 FREResult_ENUMPADDING = 0xfffff /* will ensure that C and C++ treat

 this enum as the same size. */

} FREResult;

If you are new to any of the C language flavors, an enum is a data type, which holds together a set of

named values, usually numeric. When an AIR C API function returns FRE_WRONG_TRHEAD, it’s

the same as returning the number 7, but a bit more meaningful.

Having a function that checks that result for you and does something when there is an error, i.e.

anything different from FRE_OK, will save you having to repeat those checks over and over again. The

isFREResultOK function defined below checks whether the FREResult we’ve got is an error and if it is, it

sends an error event back to ActionScript and reports the error in Xcode’s debug console:

#pragma report errors

/**

 * Checks if we have received an error code.

 * If yes, sends an error event to ActionScript

 * and logs it in the Xcode debugger's console.

 */

BOOL isFREResultOK(FREResult errorCode, NSString * errMessage)

{

 if (FRE_OK == errorCode)

 {

 // No error code, things went well. Nothing to report.

 return TRUE;

 }

 // Construct a string that will have the error code in it:

 NSString * messageToReport =

 [NSString stringWithFormat: @"%@ %d", errMessage, errorCode];

 // Now log the message in the debug console:

 NSLog(@"%@", messageToReport);

 // And send it as an event to ActionScript:

http://www.diadraw.com/

18

www.diadraw.com

 sendMessage(MSG_ERROR, messageToReport);

 return FALSE;

}

Dealing with exceptions from FRE* functions

Another thing that may go wrong when you call an AIR C API function is that an exception may be

thrown. You will notice that some functions take a parameter like this:

FREObject * thrownException

Getting information about the exception takes a few lines of code, which you probably don’t want to

repeat over and over either. The hasThrownException auxiliary function will save you the need to. It checks

if an exception was indeed thrown and if one was, tries to get information about it and pass it back to

ActionScript:

http://www.diadraw.com/

19

www.diadraw.com

#pragma exceptions

/**

 * Checks if a call to a FRE* function threw an exception

 * and if an exception is caught, sends an error event to ActionScript.

 *

 * @param thrownException The exception instance.

 *

 * @return TRUE if an exception was caught, FALSE otherwise

 */

BOOL hasThrownException(FREObject thrownException)

{

 if (NULL == thrownException)

 {

 // No exception was thrown. All clear.

 return FALSE;

 }

 // Check if we caught a valid exception object first:

 FREObjectType objectType;

 if (FRE_OK != FREGetObjectType(thrownException, &objectType))

 {

 sendMessage(MSG_ERROR,

 @"Exception was thrown,

 but failed to obtain information about its type");

 return TRUE;

 }

 // If the exception object is valid,

 // then get the exception information as a string:

 if (FRE_TYPE_OBJECT == objectType)

 {

 FREObject exceptionTextAS = NULL;

 FREObject newException = NULL;

 if (FRE_OK != FRECallObjectMethod(thrownException,

 (const uint8_t *) "toString",

 0,

 NULL,

 &exceptionTextAS,

 &newException))

 {

 sendMessage(MSG_ERROR,

 @"Exception was thrown,

 but failed to obtain information about it");

 return TRUE;

 }

 // Send an event to ActionScript with information on the exception:

 NSString * exceptionText = getNSStringFromFREObject(exceptionTextAS);

 sendMessage(MSG_ERROR,

 [NSString stringWithFormat: @"exception: %s",

 (uint8_t *) [exceptionText UTF8String]]);

 return TRUE;

 }

 return FALSE;

}

http://www.diadraw.com/

20

www.diadraw.com

If you are new to exceptions: you can think of an exception as an event. When thrown or dispatched, it

disrupts the normal flow of code. For example: if a call to AIR in the middle of one of your functions

throws an exception, the rest of the code in that function will not be executed. Execution will instead be

passed to an exception handler if one is found in your function or the function that called it or the

function that called the one that called it… If no exception handler is found, your app will likely be

terminated. An exception handler is usually defined by a try-catch statement.

Changing the properties of ActionScript objects

The AIR C API strives to make most of what you can do in ActionScript possible to replicate in C. For

example, if you have an object of type Date, named date and wanted to set its day property, you can do that.

Only instead of the ActionScript one-liner

date.day = 1;

you need to write a few more lines and to a few checks to achieve the same in C. This is what the next

function helps you with: set an arbitrary property of an arbitrary object, so long as you have a pointer to the

object and know the property name.

Note that both the object whose property you are changing and the value you are changing to need to

be FREObjects.

The call that does the actual job here is AIR C API’s FRESetObjectProperty.

#pragma properties

/**

 * Sets a named property of an ActionScript object.

 * Calling setFREObjectProperty(asEvent, (const uint8_t *) "type", eventTypeAS);

 * where asEvent and eventTypeAS are FREObject instances,

 * is like calling event.type = "SOMETHING"; in ActionScript.

 *

 * @param objAS The ActionScript object.

 *

 * @param propertyName The name of the property to be set.

 *

 * @param propertyValue The value the property should be set to.

 *

 */

void setFREObjectProperty(

 FREObject objAS,

 const uint8_t * propertyName,

 FREObject propertyValue)

{

 assert(NULL != objAS);

 assert(NULL != propertyName);

 assert(NULL != propertyValue);

 FREObject thrownException = NULL;

 FREResult status =

http://www.diadraw.com/
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7ed2.html#WS5b3ccc516d4fbf351e63e3d118a9b90204-7eba
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b147d0a96711293ce0de36-8000.html

21

www.diadraw.com

 FRESetObjectProperty(objAS, propertyName, propertyValue, &thrownException);

 // Check if we encountered an error:

 isFREResultOK(status, @"Could not set an ActionScript object's property");

 hasThrownException(thrownException);

}

http://www.diadraw.com/

22

www.diadraw.com

Reading properties from ActionScript objects

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

23

www.diadraw.com

Numeric and Boolean types

Now that you have dipped in the deep end this whole chapter will seem easy breezy. We will start the

helper functions with the simplest types: numeric and Boolean.

uint32_t

A lot of the time you need to deal with unsigned integers, so let us add a function that converts an

ActionScript int or Number in the form of FREObject into a uint32_t. A uint32_t is what it says on the tin: a

32-bit unsigned integer type.

Open AIRHelperFunctions.m and add the helper function. The main thing here is the call to AIR C

API’s FREGetObjectASUint32.

#pragma uint32_t and FREObject

/**

 * Converts a FREObject to uint32_t.

 */

uint32_t getUInt32FromFREObject(FREObject uintAS)

{

 assert(NULL != uintAS);

 uint32_t result = 0;

 FREResult status = FREGetObjectAsUint32(uintAS, &result);

 isFREResultOK(status, @"Could not convert FREObject to uint32_t.");

 return result;

}

Next, add a helper function that does the opposite and converts an unsigned integer to FREObject –

useful when returning results from FREFunctions.

/**

 * Converts a uint32_t to FREObject.

 */

FREObject getFREObjectFromUInt32(uint32_t val)

{

 // Create a FREObject

 FREObject valAS = NULL;

 // Then assign a numeric value to it

 FREResult status = FRENewObjectFromUint32(val, &valAS);

 isFREResultOK(status, @"Could not convert uin32_t to FREObject.");

 return valAS;

}

http://www.diadraw.com/
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b147369a19812938b30242-8000.html

24

www.diadraw.com

NSInteger

double

BOOL

NSNumber

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

25

www.diadraw.com

Strings
Date and Time

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

26

www.diadraw.com

Working with Objects

Converting date and time data already showed you how to deal with object types for which the AIR C

API doesn’t provide direct support. How about converting an arbitrary ActionScript type or object into an

arbitrary Objective-C type?

The pair of functions below demonstrates how to do that. They are useful in situations where you

don’t necessarily know in advance the type of objects you will be dealing with: for example, when you have

an array of values or objects passed by ActionScript to an Objective-C function.

The Objective-C type that can refer to an instance of any type or class is id. It is almost like void*, but

unlike void*, which is just a pointer to a chunk of memory where there could be anything, typed or untyped,

id usually refers to an Objective-C type.

Thus our first function will take a FREObject, check its type, create the corresponding Objective-C

type and pass it back as id. The AIR nugget here is FREGetObjectType: a function that tells you what a

FREObject is currently wrapping. Its result (returned as an output parameter) is one of the following:

typedef enum {

 FRE_TYPE_OBJECT = 0,

 FRE_TYPE_NUMBER = 1,

 FRE_TYPE_STRING = 2,

 FRE_TYPE_BYTEARRAY = 3,

 FRE_TYPE_ARRAY = 4,

 FRE_TYPE_VECTOR = 5,

 FRE_TYPE_BITMAPDATA = 6,

 FRE_TYPE_BOOLEAN = 7,

 FRE_TYPE_NULL = 8,

 FREObjectType_ENUMPADDING = 0xfffff /* will ensure that C and C++

 treat this enum as the same size. */

} FREObjectType;

The first helper function, getIdObjectFromFREObject takes each of these possible types in turn and

creates a corresponding Objective-C type. There are a couple of things to note here:

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://help.adobe.com/en_US/air/extensions/WS29f3309f46569b4e-21ac7f0b12ab5c4ef25-8000.html
http://easynativeextensions.com/ios-ebook/

27

www.diadraw.com

Containers:
Dictionary, Set, Array, Vector
Array

Dictionary

Set

Vector

When you know the data type

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

28

www.diadraw.com

Dealing with byte arrays

Being able to pass chunks of bytes between your app and your ANE is useful for dealing with, say pixel

information, contents of files or anything else you may want to encode in an array of bytes.

The AIR C API offers a set of structures and functions to help you deal with that:

 FREByteArray is a structure, which holds two pieces of information: a pointer to the memory

location of the beginning of the byte array and a number indicating how many bytes there are. It

maps to ActionScript’s ByteArray class and looks like this in C:

typedef struct {

 uint32_t length;

 uint8_t* bytes;

} FREByteArray;

 The function FREAcquireByteArray gives you exclusive access to the bytes in the byte array.

Exclusive in this case means that while you have hold of the bytes nothing else can modify them.

The price you pay for this however is that you aren’t allowed to make any other AIR C API calls

until you have released your access with the next function.

 The function FREReleaseByteArray releases the bytes in the byte array and makes them

accessible to other calls. Always make sure that a call to FREAcquireByteArray is paired with

FREReleaseByteArray.

The helper function you are going to implement that reads the bytes from a FREByteArray into an

Objective-C NSData class puts these two functions and the structure to use. Note that the constructor

dataWithBytes makes a copy of the bytes.

Tip: NSData is an object-oriented wrapper for a byte buffer.

#pragma NSData and FREObject (FREByteArray)

/**

 * Converts an ActionScript ByteArray into native NSData.

 */

NSData * getNSDataFromFREByteArray(FREObject byteArrayObjectAS)

{

 // Get hold of the ByteArray object:

 FREByteArray byteArrayAS;

 FREResult status = FREAcquireByteArray(byteArrayObjectAS, &byteArrayAS);

 if (!isFREResultOK(status, @"Could not acquire ByteArray."))

 {

 // Optional: Send an error event to ActionScript

 return NULL;

http://www.diadraw.com/
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b1479f14d08129473d87a0-8000.html
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b14342e2bac129470ccccb-8000.html
http://help.adobe.com/en_US/air/extensions/WSb464b1207c184b1466485a1a1294715f88b-8000.html

29

www.diadraw.com

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

30

www.diadraw.com

Dealing with JSON

Handling NSError

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

31

www.diadraw.com

Image Data

Handling image data between iOS and ActionScript is quite useful in various situations: when you

want to capture frames from the native camera and use them in ActionScript, for example. Or in the other

direction: for passing images from ActionScript to native code to compose a video like our Screen Recorder

ANE does.

A lot of the time you can treat the image data as a series of bytes and use the helpers you defined in the

Dealing with byte arrays chapter. It is also useful to be able to handle BitmapData, especially when you want

to pass BitmapData objects from AIR to iOS.

Here the helper takes a BitmapData object, converts is to NSData and waits for the caller to process

the NSData before releasing the BitmapData. A bit of a paranoid approach, admittedly. For that purpose the

caller must supply a callback for the native pixel data to be passed into for processing: ProcessBytesCallback.

#pragma BitmapData and NSData

/**

 * Copies the byes from an ActionScript BitmapData object into an NSData object.

 * Note that the result is delivered in a callback function supplied by the caller.

 * @param bitmapDataObj The ActionScript BitmapData object.

 * @param callback The function which will receive the result.

 */

void getNSDataFromFREObjectBitmapData(

 FREObject bitmapDataObj, ProcessBytesCallback callback)

{

 assert(NULL != bitmapDataObj);

 FREBitmapData frameBitmapData;

 FREResult status = FREAcquireBitmapData(bitmapDataObj, &frameBitmapData);

 assert(FRE_OK == status);

 int nComponents = 4; // ARGB

 int bytesPerRow = nComponents * frameBitmapData.lineStride32;

 NSUInteger totalBytes = bytesPerRow * frameBitmapData.height;

 NSData * bitmapData =

 [NSData dataWithBytes: frameBitmapData.bits32 length: totalBytes];

 // Here we call the callback function which will deal with the bytes in NSData

 // before we release the BitmapData object:

 callback(bitmapData);

 // Now release the BitmapData object:

 status = FREReleaseBitmapData(bitmapDataObj);

 assert(FRE_OK == status);

}

http://www.diadraw.com/
http://easynativeextensions.com/product/screen-recorder-native-extension-source-code/
http://easynativeextensions.com/product/screen-recorder-native-extension-source-code/

32

www.diadraw.com

Now about that callback… It’s a function that takes a pointer to NSData and doesn’t return a result.

The callback is where you do your native magic on the BitmapData pixels. It’s best to define the callback’s

signature in the header file, so that the users of your helper function can see it. Here is the syntax:

AIRHelperFunctions.h

typedef void(^ProcessBytesCallback)(NSData * byteData);

The next helper allows you to do the same when, instead of BitmapData, you have the image data in a

ByteArray on the AIR side. Note that the result is again delivered in a callback. Hey, just because you are

paranoid, it doesn’t mean they aren’t after you, as Joseph Heller put it…

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

33

www.diadraw.com

Final step: check your header

Like this sample?

Get the full book and accompanying code here.

http://www.diadraw.com/
http://easynativeextensions.com/ios-ebook/

34

www.diadraw.com

Where to go from here

Check out the free online tutorials on EasyNativeExtensions.com and have a look at the free and commercial

ANEs in our shop.

Thank you!

Thank you for picking up this iOS Data Guide and investing the time and money in it! We hope it will

save you hours of work on more than one project and get the quality of your work to the highest level.

If you have a few minutes, we would love to hear what you thoughts about it.

Leave a comment on our blog or drop us an e-mail at office@diadraw.com.

Other ways to get in touch and share

@DiaDrawCom on Twitter

https://www.facebook.com/DiaDraw on Facebook

DiaDraw on LinkedIn

Thanks again and may the source be with you!

http://www.diadraw.com/
http://easynativeextensions.com/tutorials-category/
http://easynativeextensions.com/shop
http://easynativeextensions.com/shop
http://easynativeextensions.com/tutorials-category/
mailto:office@diadraw.com?subject=Hi%20guys...
https://twitter.com/DiaDrawCom
https://www.facebook.com/DiaDraw
http://www.linkedin.com/pub/diadraw-diadraw/3b/754/776

	TheAdobeAIRCAPIGivesYouConvenienceFuncti
	QuickPreparationAddTheHeaders
	Assert
	getUInt32FromFREObject
	ByteArrays
	ImageData
	AuxiliaryFunctions
	FinalStepCheckYourHeader

